
VGG19 U-Net Image Colorizer With Perceptual Loss

Hunter Adrian, John Farrell, Tyler Gurth, Jania Vandevoorde
Brown University

Abstract

We implemented a convolutional neural network (CNN)
to colorize grayscale images using a U-Net architecture
with the VGG-19 model. U-Net is a popular deep learn-
ing architecture known for its effectiveness in image seg-
mentation tasks. VGG-19 is a large model with almost 150
million parameters that is pre-trained. It is traditionally
used for feature detection and was adapted for colorizing in
our project. Our model is trained using the MIT Places365
dataset, which contains 365,000 images of scenes (which
we split into 328,500 train and 36,500 test images, a 90/10
split). Moreover, the model makes use of a custom Percep-
tual Loss function for a higher level chromatic evaluation of
the CNN. Our results show that the model produces vibrant
and realistically colored images. This project reinforces the
potential of deep learning in creative image processing.

1. Introduction
For quite a span of time, historians, archivists, and the

occasional Reddit user, have tried to use manual means of
coloring historical (or otherwise) black and white photos.
While possible for someone with enough time on their hands,
proper references, and skills in Photoshop, it is useful to
automate this process, making use of large image models to
color photos with pretrained weights.

Thus, our research group (The RGBaddies) sought to
create a model architecture and algorithmic process to take
grayscale photos, and color them to a high efficacy. Through
proper research, we determined that large Convolutional
Neural Networks (CNNs) would be the most proficient in
this difficult task. Although often used for recognition and
classification, a basic understanding of a CNN is that it takes
an input and an output, and tries its best to create weights
that make that conversion.

This is not novel - many publications exist in the greater
scheme of coloring grayscale images to various accuracies
(and, on various methodologies), however, we implement a
strategy that combines the best thoughts from several difficult
publications to make a quick and accurate model.

We utilize a UNET modeled CNN for our project, com-

bining a base VGG-19 pretrained network with our own
custom upsampling process. More unique though, is that we
combine our VGG-19 model with a perceptual loss function,
to increase our results and be more resistant to variation
that doesn’t necessarily affect perceptual color expectations.
Thus, our strong model takes insights from accurate object
detection in juxtaposition to human perception of grouped
hues across pixel variation.

We train our model on the MIT Places365 dataset, which
contains a myriad of environments, people, and other var-
ied scenes. The large (and accessible) dataset provided us
with a broad learning base, and reasonable scenes for color
prediction.

In our project, we thoughtfully explore the uses of im-
age colorization, and how it might impact different people,
researchers, developers, and communities. We build an in-
teractive tool for users to try our model themselves, and
discover how they might interact with an automatic tool
for their own use cases. Our results are confident and show
promise; we believe that our implementation is not just a
highly accurate model for predicting color, but is a scalable
backbone for more complex models to come.

2. Related Work

The 2016 Zhang et al. [6] study was the first paper we
consulted to develop our approach to colorization. The re-
searchers used a series of convolution blocks totaling about
20 convolution layers and used spatial downsampling and up-
sampling between blocks to form their network. They used
rebalanced classification loss to promote vibrance and diver-
sity of colors in their recoloring. Zhang’s paper compared its
results to the 2016 Dahl colorization study [2] which used 4
layers from VGG16 in a small U-Net-like architecture. The
latter study also used a custom L2-inspired loss function by
averaging the mean squared error with two blur distances of
3 and 5 pixel Gaussian kernels. Nguyen et al. [4] built on
VGG19 with L2 as the loss function. Based on this, decided
to go with a U-Net approach with VGG19 as our pre-trained
head (since VGG16 is outdated). We adapted the custom
Dahl loss function to the Lab colorspace (whereas that study
had originally used it in HSV).

An et al. [1] used a similar approach to Zhang et al. with

1

a series of big convolution layers, ReLU, and batch nor-
malization. They also used a classification loss function –
multimodal cross-entropy loss – with 313 color bins.

Researchers Sahay and Choudhary [5] automated the col-
orization of videos using the pre-trained network from Lars-
son et al. [3], another interesting application of this problem.
The hypercolumn-based architecture is inspired by VGG-
style architectures, using a similar approach with 7 convo-
lution blocks, ReLU, and batch normalization. They used
multinomial cross-entropy loss. A key element of their net-
work is the use of skip-layer connections within the network
to get a pixel’s color value by reading localized slices from
a series of layers. We also implemented skip connections in
our model to improve accuracy.

Our choice to implement a custom loss function – per-
ceptual loss – was largely inspired by the array of different
loss functions we read about during the research stage of the
project. We began with L2 loss as that seemed straightfor-
ward to interpret in the early stages, but the implementation
of a custom loss function significantly increased the quality
of our results. We attribute this to the extensive research we
completed before beginning to build our architecture. The
Dahl paper [2] was pivotal during this process.

3. Method
In trying to color images, we understood that at a baseline

level, the method should involve taking some gray image,
and outputting a 2 or 3 channel color image. Thorough re-
search suggested that the best way of doing this was to break
an image down from RGB into the Lab color space, where
L represents perceptual lightness and a and b denote the four
unique colors of human vision: red, green, blue and yellow.
This was a simple (and, admittedly popular) way to represent
our inputs and hopeful outputs into distinct categories.

With this in mind, our goal was to build a model that
accurately took the L channel of an image, and outputted its
associated a and b channels, which we would then combine
with the input L channel to form the *now colored* image.

Our process can be broken down into 3 key stages: pre-
processing, defining a loss function, and constructing an
appropriate architecture.

Pre-processing efforts, albeit cyclic, a reflection of (at
the time, predicted) later efforts in constructing the CNN
architecture. Pre-processing started with separating and pars-
ing the train / test images. Then, all images went through
a augmentations (for vertical and horizontal flipping), and
a custom process function, which brought all images into a
floating point 0-1 range and resized them to be 224x224 (the
size of image that VGG-19 was trained on with Imagenet).

Finally, images were converted into the LAB colorspace
with the following function (which took in the tensor objects
from the TensorFlow flowfromdirectory function):

1 def rgb_to_lab(self, dat):
2 for im in dat:
3 im = color.rgb2lab(im[0])
4 # We return a light image (we

just copy the same channel 3
times for VGG), and AB

channel image.
5 yield (im[:, :, :, [0, 0, 0]],

im[:, :, :, [1, 2]])

What may not seem intuitive is the definition of the the
lightness image (the first item in the returned tuple, while the
second item is the the ab space channels. The 0th channel of
the converted image, the L space, is copied over three times
solely because VGG-19 expects an input with 3 channels.
Thus, we give it a pseudo 3 channel input, that is, the L
channel copied thrice, to which it predicts a returned “image”
of the same size, composed of an a and b channel.

Defining a loss function was simple enough, in fact, our
naive implementations just used MSE (Mean Squared Error)
to calculate the differences between predicted and ground
truth ab channel pairs. That being said, research guided us
to define a more complex perceptual loss function, to con-
sider images that had variations, but on a high level, should
produce a similar smoothed color scheme.

We started with the MSE:

MSE((Yi, Ŷi) =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

We used this MSE as a component for finding what we
call a Gaussian Filtered MSE (GD, or Gaussian Distance),
(where f is the filter size, and G is the Gaussian filter func-
tion, which also takes a filter size.), (Eq. 2).

GD((Yi, Ŷi, f) =

√
MSE(G(Yi, f), G(Ŷi, f)) (2)

We used our GMSE function at several filter sizes to
define our loss function (where, here M is the MSE function),
(Eq. 3).

L(Yi, Ŷi) =

√
M(Yi, Ŷi) + GD(Yi, Ŷi, 3) + GD(Yi, Ŷi, 5)

3
(3)

Our loss function, (Eq. 3) acts as a more complex, perceptual
function with higher level smoothing, leading to faster con-
vergences due to its somewhat underfitting nature. Although
it is less sensitive to small variability, it resulted in smoother
(and, more optimized) outputs.

Implemented in Python, (Eq. 3) takes on a simple form
(adapted from Ryan Dahl’s LUV space perceptual loss func-
tion [2]):

Figure 1. Vgg-19 U-Net Architecture implemented.

1 def percept_loss_func(self, truth,
predicted):

2 truth_blur_3 = blur(truth, (3,3))
3 truth_blur_5 = blur(truth, (5,5))
4
5 predicted_blur_3 = blur(predicted,

(3,3))
6 predicted_blur_5 = blur(predicted,

(5,5))
7
8 dist = mse(truth, predicted) ** 0.5
9 dist_3 = mse(truth_blur_3,

predicted_blur_3) ** 0.5
10 dist_5 = mse(truth_blur_5,

predicted_blur_5) ** 0.5
11
12 return (dist + dist_3 + dist_5) / 3

With the perceptual loss function in mind, the archi-
tecture takes in a 3 (same) channel L image, and returns
2 channels, the ab channels for that given image. Specif-
ically, our architecture, visualized in (figure. 1) is a U-
NET based architecture, making use of the VGG-19 pre-
trained model. At a glance, the architecture takes the out-
puts of the VGG-19 model after each block, and upsamples
them with Conv2dTranspose layers to maintain the desired
output size across the entire model. In the naive solution,
one could run the pretrained model (which, brings forth
an output of 14x14x512), and then upsample with several
Conv2dTranpose layers back up to the desired output shape.
In fact, this was our first naive solution. However, because
the input to all the upsampling layers is just a 14x14 block,
the upsampling is heavily marked by this original output, and
struggles to define detail and clarity in a lower dimensional
space.

Using a UNET architecture allows us to upsample “along
the way” preventing us from needing to grapple with a very

small outputted image, and somehow blow it up to size in
an accurate fashion. Our preliminary efforts were obviously
marked in a 14x14 grid, and lacked sharpness in detail (ob-
viously lost in this extreme down - upsampling process). To
form the UNET architecture, we studied the VGG-19 archi-
tecture with great attention, and then “matched” its block
outputs with the same size Conv2dTranspose layers to undo
the shrinking convolutions. We also made uses of BatchNor-
malization layers to normalize outputs and to create a more
stable model.

Our architecture finishes with sizing a final convolution to
be 224x244x2 (to match the 2 ab channels). Then, it makes
use of a Rescaling layer to take the output values (all 0-1),
and map them to a range of (-128, 128), which is the range
of the LAB colorspace.

The architecture over 13.39 million trainable parameters,
and 33 million total parameters, and ran fairly quickly on
Colab GPUs.

Finally, with weights in hand, we use a special visualiza-
tion script to take the weights, predict ab channels, and match
them back up with the L channel of the original image.

4. Results
After training our model on 50 epochs of 160 images each,

we reached a training MSE of 147.9 and validation MSE of
135.2. We were quite pleased with these results, as they were
comparable to the results of other papers. The progression of
our mean square error (MSE) and perceptual loss can be seen
in figures 1 and 4. Both MSE and loss improve quickly over
the first 5 epochs, but seem to plateau by epoch 20. There
is a clear correlation between MSE and our perceptual loss
values over epochs. This correlation is expected because our
perceptual loss is an average of euclidean distances between
truth and predicted pixel values, similar to MSE between
truth and predicted pixel values.

Our model seems to predict the ab color space of
grayscale images best for grass and blue sky landscapes.

Figure 2. Result on Test Image.

Figure 3. MSE over epochs. Figure 4. Loss over epochs.

Figure 2 is an example of this. Although the results of figure
2 are quire good, we can see the results differ for other pho-
tos. Figure 5 shows more results. In the third row of figure 5,
we see where our model struggles to understand sunsets and
sunrises, always choosing to color the sky blue. And in the
last row of figure 5, the baby’s blue pants are colored brown.
This is a phenomenon where our model is biased towards
bland colors that are common in the dataset (included dirt,
grass, and gray clouds) [6]. Although the baby’s pants were
actually blue, the brown coloring is also natural to the human
eye. It is important to point out the goal of our model is to
predict colors that seem natural, not necessarily replicating a
truth value. Therefore, the model’s perceptual loss function
prioritizes natural coloring [2]. Our perceptual loss function
doesn’t account for color re-balancing, leading to biased
unsaturated coloring. To account for bland coloring, we in-
crease the contrast of our results by scaling the predicted ab
color space.

4.1. Technical Discussion

A future improvement to consider is further image aug-
mentation. As our input must be a 224 × 224 pixel image,
any image not of this shape must be resized. It would be
expected that resizing an image will distort its perception

and erode the colorization quality. To be robust against di-
mension shifting, including image augmentation that that
distorts the original image to simulate this reshaping could
improve the outputs of our model. At the moment, the only
augmentation prepossessing is flipping the image on the
x-axis.

Choosing a loss function is a crucial part of colorization
models. There are papers covering many different loss func-
tions, including a color classification [1]. The classification
includes binning the ab color space into 313 bins [5]. The
bins are a somewhat arbitrary creation, of the ab color space
split into 10×10 grid squares. There are originally more than
313 bins, but only 313 are in-gamut [6]. This categorical bin-
ning allows such colorization models to utilize cross-entropy
loss, helping with color rebalancing. Due to the high quan-
tity of grey clouds, dirt, roads, and other bland colors, the
results without when using an L2-like loss function are of-
ten unsaturated, biased towards these greys and browns [1].
This is clear in the last two rows of our truth to predicted
comparisons, where vibrant colors are replaced with browns
(figure 5). This bias is solved by reweighing bins in the cross
entropy loss function by rarity [1]. To improve our model,
quantizing the ab color space could improve our results, as
the more intelligent cross entropy loss function can account

Figure 5. Comparison of different types of test images.

for color biases. Such an implementation requires clustering
existing pixel values for every image to the existing 313 bins,
which can be time and resource exhaustive. Our perceptual
loss function sacrifices some accuracy and vibrancy for the
sake of resources and natural-feeling coloring.

Many previous works use a subset of ImageNet as their
dataset. This dataset provides a wide variety of objects, sce-
nary, and life, categorized under thousands of labels. This
model was trained on Places365, a set of 365,000 images
ranging from photos of people, to landscapes and cars. This
dataset worked well for training, and was a manageable size
for cloud computing. Filtering grayscale images from the

dataset would likely improve our existing results. Using a
larger dataset would be tricky due to storage limits on our
training platform, Google Colab. Nevertheless, expanding to
a larger dataset, such as ImageNet, would give us a larger
scope of scenery and life, following many of the mainstream
colorization papers.

5. Social Impact

Besides the popularity for image colorization requests on
a Reddit Thread (/r/Colorization), historical image
colorization is a vital tool needed by researchers, archivists,
and many people worldwide who wish to color black and

https://www.image-net.org/
http://places.csail.mit.edu/

Figure 6. Left: predicted A channel of test image. Right: predicted
B channel.

white images they may own.
The fact is, the ability to colorize black-and-white images

can have significant impacts on society, although care and
nuance is required in the training, implementation, and inter-
pretation of these systems. Thus, there are both positive and
negative impacts on using automatic colorizing models:

On the positive side, our project can enhance educational
experiences. Colorizing historical photos can make past
events feel more immediate and relatable, potentially mak-
ing learning more engaging for students. Moreover, coloring
these older images can offer a more accurate lens into “what
once was”, providing clarity and context to older materials
in a modern viewpoint. It may help remove the guesswork
in understanding societal, fashion, and cultural trends. Most
folks see the world in color, and so color presentations of
historical media helps humanize subjects and bring forth
clarity beyond the black and white.

Additionally, colorization can deepen individuals’ connec-
tions to their heritage by bringing old family photographs to
life, thus fostering a greater understanding of their ancestry.
Many individuals wish to use colorizing to revitalize images
of passed loved ones, and reconnect to the past. Thus, auto-
matic coloring systems such as ours have a lot of personal
benefit to many impassioned would-be users.

That being said, automatic color depictions should al-
ways be taken with a grain of salt. Inaccurate colorization
might misrepresent historical realities, misleading viewers
unaware of the modifications. Ethical concerns arise regard-
ing the alteration of historical records and the authenticity
of colorized images compared to their original forms. If the
training data for the colorization AI model is biased, these
biases could manifest in the outputs, affecting the portrayal
of skin tones and potentially perpetuating stereotypes or mis-
representations of certain demographic groups. Furthermore,
an excessive reliance on colorized images might lead some
to undervalue original artworks and photographs, potentially
diminishing their historical importance and the artistic intent
of the original creators.

To mitigate these risks, careful curation of training data
and vigilant testing for biased outputs are crucial to maintain
the integrity and accuracy of historical representations. It is
also important to clearly label colorized images as modified

to prevent confusion and misinterpretation. Used responsibly,
colorization can be a powerful educational and engagement
tool, but it requires careful handling and transparency.

6. Conclusion
In this paper, we experimented with using perceptual

loss and VGG-19 U-Net architecture to predict the colors
of grayscale images. The results of perceptual loss showed
our model and architecture is viable for creating naturally
looking colorful photos, but doesn’t correctly account for
unique coloring and saturation. Colors returned are plausi-
ble and look natural to the human eye. The model can be
used to color any grayscale image, but has best use-cases
for naturally existing photos, such as old black and white
photography or night vision goggles (figure 7).

Figure 7. Recoloring of military night vision.

References
[1] Jiancheng An, Koffi Gagnon Kpeyiton, and Qingnan Shi.

Grayscale images colorization with convolutional neural net-
works. Springer-Verlag GmbH Germany, part of Springer
Nature, 2020. Published online: 24 February 2020. 1, 4

[2] R. Dahl. Automatic colorization, 2016. Accessed: May 12,
2024. 1, 2, 4

[3] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich.
Learning representations for automatic colorization. CoRR,
abs/1603.06668, 2016. 2

[4] Tung Duc Nguyen, Kazuki Mori, and Ruck Thawonmas. Image
colorization using a deep convolutional neural network. CoRR,
abs/1604.07904, 2016. 1

[5] Tanvi Sahay and Ashutosh Choudhary. Automatic colorization
of videos, 2017. 2, 4

[6] R. Zhang, P. Isola, and A. A. Efros. Colorful image colorization.
Proceedings of the University of California, Berkeley, 2016. 1,
4

Appendix
Team contributions

John Farrell Developed web interface and Google Colab
pipelines for our model. Researched broader methods
of colorization, including quantizing colorspaces. Im-
plemented perceptual loss function using gaussian blur.

Tyler Gurth Model architecture, visualization scripts and
visualizations.

Hunter Adrian Researching effective methods and social
impacts. Work on UNET architecture implementation
and image pre-processing.

Jania Vandevoorde Imported and modified main.py and
tensorboard utils.py from HW5 for our use
case. Read relevant research papers and helped build
CNN architecture.

